Modules of co-occurrence in the cyanobacterial pan-genome reveal functional associations between groups of ortholog genes
نویسندگان
چکیده
Cyanobacteria are a monophyletic phylogenetic group of global importance and have received considerable attention as potential host organisms for the renewable synthesis of chemical bulk products from atmospheric CO2. The cyanobacterial phylum exhibits enormous metabolic diversity with respect to morphology, lifestyle and habitat. As yet, however, research has mostly focused on few model strains and cyanobacterial diversity is insufficiently understood. In this respect, the increasing availability of fully sequenced bacterial genomes opens new and unprecedented opportunities to investigate the genetic inventory of organisms in the context of their pan-genome. Here, we seek understand cyanobacterial diversity using a comparative genome analysis of 77 fully sequenced and assembled cyanobacterial genomes. We use phylogenetic profiling to analyze the co-occurrence of clusters of likely ortholog genes (CLOGs) and reveal novel functional associations between CLOGs that are not captured by co-localization of genes. Going beyond pair-wise co-occurrences, we propose a network approach that allows us to identify modules of co-occurring CLOGs. The extracted modules exhibit a high degree of functional coherence and reveal known as well as previously unknown functional associations. We argue that the high functional coherence observed for the modules is a consequence of the similar-yet-diverse nature of cyanobacteria. Our approach highlights the importance of a multi-strain analysis to understand gene functions and environmental adaptations, with implications beyond the cyanobacterial phylum. The analysis is augmented with a simple toolbox that facilitates further analysis to investigate the co-occurrence neighborhood of specific CLOGs of interest.
منابع مشابه
Genetic Co-Occurrence Network across Sequenced Microbes
The phenotype of any organism on earth is, in large part, the consequence of interplay between numerous gene products encoded in the genome, and such interplay between gene products affects the evolutionary fate of the genome itself through the resulting phenotype. In this regard, contemporary genomes can be used as molecular records that reveal associations of various genes working in their na...
متن کاملIdentification of Prognostic Genes in Her2-enriched Breast Cancer by Gene Co-Expression Net-work Analysis
Introduction: HER2-enriched subtype of breast cancer has a worse prognosis than luminal subtypes. Recently, the discovery of targeted therapies in other groups of breast cancer has increased patient survival. The aim of this study was to identify genes that affect the overall survival of this group of patients based on a systems biology approach. Methods: Gene expression data and clinical infor...
متن کاملThe evolutionary dynamics of functional modules and the extraordinary plasticity of regulons: the Escherichia coli perspective
Using profiles of phylogenetic profiles (P-cubic) we compared the evolutionary dynamics of different kinds of functional associations. Ordered from most to least evolutionarily stable, these associations were genes in the same operons, genes whose products participate in the same biochemical pathway, genes coding for physically interacting proteins and genes in the same regulons. Regulons showe...
متن کاملBioinformatics Study and Investigation of the Expression Pattern of Several Important Genes Involved in Glycyrrhizin Synthesis of Glycyrrhiza glabra L. in Autumn and Spring Seasons
Glycyrrhiza is one of the important medicinal plants that is in danger of extinction. Search for finding accessions that have a higher glycyrrhizic acid is very important in breeding programs. Functional genomics methods such as EST sequencing prepare the ability to identify consensus gene families among studied species and interpretation of the genome. In this research, 55960 EST sequences of ...
متن کاملI-13: Transcriptome Dynamics of Human and Mouse Preimplantation Embryos Revealed by Single Cell RNA-Sequencing
Background: Mammalian preimplantation development is a complex process involving dramatic changes in the transcriptional architecture. However, it is still unclear about the crucial transcriptional network and key hub genes that regulate the proceeding of preimplantation embryos. Materials and Methods: Through single-cell RNAsequencing (RNA-seq) of both human and mouse preimplantation embryos, ...
متن کامل